

BSI Standards Publication

Friction stir welding — Aluminium

Part 4: Specification and qualification of welding procedures

bsi.

National foreword

This British Standard is the UK implementation of EN ISO 25239-4:2020. It is identical to ISO 25239-4:2020. It supersedes BS EN ISO 25239-4:2011, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee WEE/-/1, Briefing committee for welding.

A list of organizations represented on this committee can be obtained on request to its committee manager.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2020
Published by BSI Standards Limited 2020

ISBN 978 0 539 04090 6

ICS 25.160.10

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2020.

Amendments/corrigenda issued since publication

Date	Text affected

EUROPEAN STANDARD
NORME EUROPÉENNE
EUROPÄISCHE NORM

EN ISO 25239-4

July 2020

ICS 25.160.10

Supersedes EN ISO 25239-4:2011

English Version

Friction stir welding - Aluminium - Part 4: Specification
and qualification of welding procedures (ISO 25239-
4:2020)

Soudage par friction-malaxage - Aluminium - Partie 4:
Descriptif et qualification des modes opératoires de
soudage (ISO 25239-4:2020)

Rührreibschweißen - Aluminium - Teil 4: Anforderung
und Qualifizierung von Schweißverfahren (ISO 25239-
4:2020)

This European Standard was approved by CEN on 12 July 2020.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2020 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. EN ISO 25239-4:2020 E

European foreword

This document (EN ISO 25239-4:2020) has been prepared by Technical Committee ISO/TC IIW "International Institute of Welding" in collaboration with Technical Committee CEN/TC 121 "Welding and allied processes" the secretariat of which is held by DIN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2021, and conflicting national standards shall be withdrawn at the latest by January 2021.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 25239-4:2011.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 25239-4:2020 has been approved by CEN as EN ISO 25239-4:2020 without any modification.

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Development and qualification of welding procedures	2
4.1 General	2
4.2 Technical content of a pWPS	2
5 Qualification based on a welding procedure test	4
5.1 General	4
5.2 Test pieces	4
5.2.1 Shape and dimensions of test pieces	4
5.2.2 Welding of test pieces	6
5.3 Examination and testing of test pieces	6
5.3.1 Extent of testing	6
5.3.2 Visual testing and acceptance levels	7
5.3.3 Destructive tests	7
5.3.4 Re-testing	12
5.4 Range of qualification	12
5.4.1 General	12
5.4.2 Related to the fabricator	12
5.4.3 Other variables	12
5.5 Welding procedure qualification record	12
6 Qualification based on pre-production welding test	13
6.1 General	13
6.2 Test pieces	13
6.3 Examination and testing of test pieces	13
6.4 Range of qualification	13
6.5 Welding procedure qualification record	13
Annex A (informative) Example of a form for preliminary welding procedure specification (pWPS) and welding procedure specification (WPS)	14
Annex B (informative) Non-destructive testing	15
Annex C (informative) Hammer S-bend test of lap welds	16
Annex D (informative) Example welding procedure qualification record form (WPQR)	18
Bibliography	22

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by IIW, *International Institute of Welding*, Commission III, *Resistance Welding, Solid State Welding and Allied Joining Process*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 121, *Welding and allied processes*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 25239-4:2011), which has been technically revised.

The main changes compared to the previous edition are as follows:

- alternative process control methods (e.g. temperature control) have been included;
- the wording of the paragraph on thermal management and heat treatments has been improved;
- the definition for the extraction of test specimens has been modified for all test pieces and the figures have been revised accordingly;
- the requirement for testing transverse test specimens with as welded surfaces has been deleted;
- in [Table 3](#), a new requirement on the minimum joint efficiency has been added for heat treatable alloys below 5 mm;
- the pWPS is now to be qualified in accordance with the defined acceptance levels included in ISO 25239-5;
- acceptance levels have been included in the WPQR form in [Annex D](#).

A list of all parts in the ISO 25239 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

Welding processes are widely used in the fabrication of engineered structures. During the second half of the twentieth century, fusion welding processes, wherein fusion is obtained by the melting of parent material and usually a filler metal, dominated the welding of large structures. In 1991, Wayne Thomas at TWI invented friction stir welding (FSW), which is carried out entirely in the solid phase (no melting).

The increasing use of FSW has created the need for this document in order to ensure that welding is carried out in the most effective way and that appropriate control is exercised over all aspects of the operation. This document focuses on the FSW of aluminium because, at the time of publication, the majority of commercial applications for FSW involved aluminium. Examples include railway carriages, consumer products, food processing equipment, aerospace structures, and marine vessels.

Friction stir welding — Aluminium —

Part 4: Specification and qualification of welding procedures

1 Scope

This document specifies the requirements for the specification and qualification of welding procedures for the friction stir welding (FSW) of aluminium.

In this document, the term “aluminium” refers to aluminium and its alloys.

This document does not apply to friction stir spot welding which is covered by the ISO 18785 series.

NOTE Service requirements, materials or manufacturing conditions can require more comprehensive testing than is specified in this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 4136, *Destructive tests on welds in metallic materials — Transverse tensile test*

ISO 5173, *Destructive tests on welds in metallic materials — Bend tests*

ISO 9017, *Destructive tests on welds in metallic materials — Fracture test*

ISO 15607:2019, *Specification and qualification of welding procedures for metallic materials — General rules*

ISO 17637, *Non-destructive testing of welds — Visual testing of fusion-welded joints*

ISO 17639, *Destructive tests on welds in metallic materials — Macroscopic and microscopic examination of welds*

ISO 25239-1, *Friction stir welding — Aluminium — Part 1: Vocabulary*

ISO 25239-5:2020, *Friction stir welding — Aluminium — Part 5: Quality and inspection requirements*

ISO/TR 25901 (all parts), *Welding and allied processes — Vocabulary*

ISO 80000-1:2009, *Quantities and units — Part 1: General*

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 25239-1 and ISO/TR 25901 (all parts) apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <http://www.electropedia.org/>

4 Development and qualification of welding procedures

4.1 General

Qualification of welding procedures shall be performed prior to production welding.

The abbreviations listed in ISO 15607:2019, Table 1, shall apply.

The fabricator shall prepare a preliminary welding procedure specification (pWPS) and shall ensure that it is applicable for production using experience from previous production jobs and the general fund of knowledge of welding technology. The pWPS shall be prepared with the aim of achieving the required quality acceptance levels specified in ISO 25239-5:2020, Annex A.

A pWPS shall be used as the basis for the establishment of a welding procedure qualification record (WPQR). The pWPS shall be tested in accordance with one of the methods listed in [Clause 5](#) (welding procedure test) or [Clause 6](#) (pre-production welding test). [Clause 5](#) shall be used when the production part or joint geometry is accurately represented by a standardized test piece or pieces, as shown in [5.2](#). [Clause 6](#) shall be used when the production part or joint geometry is not accurately represented by the standardized test pieces, as shown in [5.2](#). The information required in a pWPS is given in [4.2](#).

For some applications, it can be necessary to supplement or reduce the content of the pWPS given in [4.2](#).

A welding procedure specification (WPS) covers a certain range of parent material thicknesses as well as a range of aluminium alloys.

Ranges and tolerances in accordance with the relevant International Standard (see [Clause 2](#)) and the fabricator's experience shall be specified when appropriate.

An example of a pWPS form for force and position controlled friction stir welding is shown in [Annex A](#).

Alternative process control methods can be used such as temperature control. Essential variables of the alternative process control method need to be documented in the pWPS.

4.2 Technical content of a pWPS

The following information, as a minimum, shall be included in a pWPS:

- a) fabricator information:
 - identification of the fabricator;
 - identification of the pWPS;
- b) parent material type(s), temper(s), and reference standard(s);
- c) parent material dimensions:
 - thickness of the members comprising the welded joint;
 - outside diameter of tube;
- d) equipment identification:
 - model;
 - serial number;
 - equipment fabricator;
- e) tool identification:
 - material;

- drawing or drawing number;

f) clamping arrangement:

- method and type of jigging, fixtures, rollers, and backing (dimensions and material);
- tack welding process and conditions, when required;
- the pWPS shall indicate any required tack welding or prohibited tack welding;
- assembly requirements (i.e. welding gap, misalignment);

g) joint design:

- sketch of the welded joint design and dimensions;
- joint configuration;
- weld run sequence and direction;
- run-on and run-off plates, material type, reference standard, dimensions and method of attachment (if required);
- placement of exit hole;

h) joint preparation and cleaning methods;

i) welding details:

- method (basic, stationary shoulder, bobbin tool, etc.);
- tool motion (e.g. rotation in either the clockwise or anticlockwise direction, rotation speed including downward and upward motion);
- tool position (e.g. heel plunge depth) or axial force, as applicable;
- tool cooling (internal, external, cooling medium), if applicable;
- tilt angle;
- side tilt angle, lateral offset;
- dwell time at start of weld;
- dwell time at end of weld;
- weld overlap area (WOA) for a butt joint or lap joint in tube;
- lap joint: advancing or retreating side near the upper sheet edge, direction of welding, depth of probe penetration in lower sheet;

j) welding speed:

- welding speed, including details of any changes during welding;
- ramp-up/ramp-down or upslope/downslope speeds when applied;

k) welding position: applicable welding positions;

l) thermal management:

- details of any pre-weld heat treatment, if applicable;

- details of the preheating temperature, preheat maintenance temperature and/or interpass temperature for the base materials or the friction stir welding tool, if applicable (use of ISO 13916 is recommended);
- details of any postweld heat treatment (e.g. solution heat treatment, ageing, stress relieving), if applicable;
- details of any methods for managing the cooling rates (e.g. gas flows, liquid environments) applied prior, during or after welding, if applicable;

m) postweld (mechanical) processing: methods to correct distortion and straighten parts, removal of toe flash or any other postweld processing of the weldment.

5 Qualification based on a welding procedure test

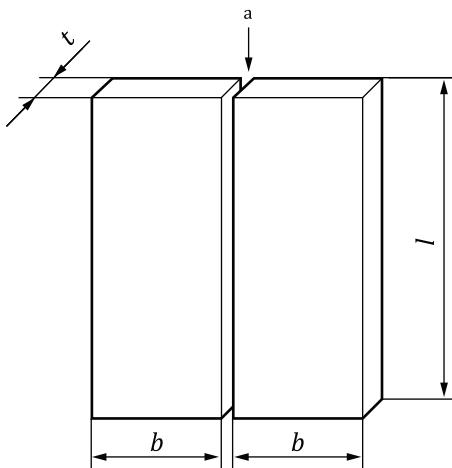
5.1 General

The preparation, welding and testing of test pieces shall be in accordance with [5.2](#) and [5.3](#).

Fulfilment of the requirements of this document can also serve to qualify the welding operator (see ISO 25239-3).

5.2 Test pieces

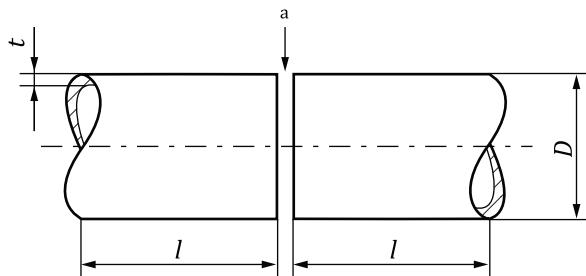
5.2.1 Shape and dimensions of test pieces


5.2.1.1 General

The length or number of test pieces shall be sufficient to allow all required tests to be performed.

Test pieces longer than the minimum size may be used to allow for the provision of extra specimens, for re-testing specimens or both (see [5.3.4](#)).

The rolling direction or extrusion direction shall be marked on the test piece.

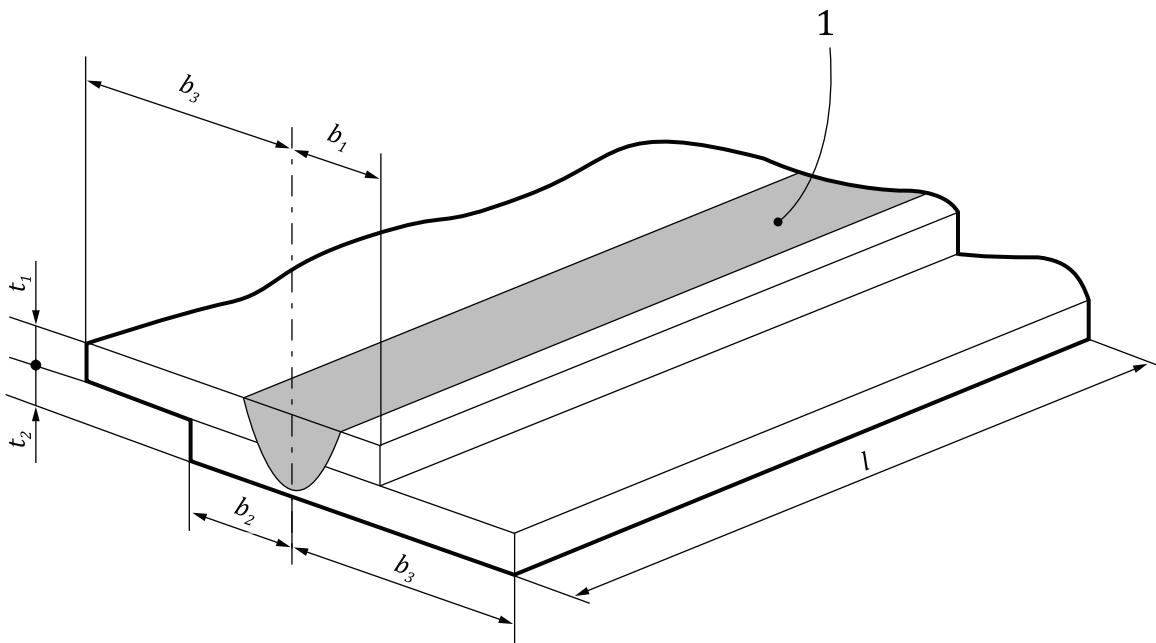

To produce a butt joint in flat material, the test piece shall be prepared in accordance with [Figure 1](#). The length of the test piece should allow a weld length of at least 500 mm.

Key

- b width of components
- l length of components
- t material thickness
- a Joint preparation and fit-up, as specified in the pWPS.

Figure 1 — Test piece for a butt joint in sheet**5.2.1.2 Butt joint in tube**

The test piece shall be prepared in accordance with [Figure 2](#).


Key

- D outside diameter of tube
- l length of components
- t material thickness
- a Joint preparation and fit-up, as specified in the pWPS.

Figure 2 — Test piece for a butt joint in tube**5.2.1.3 Lap joint**

The test piece shall be prepared in accordance with [Figure 3](#).

The weld may be either partial or full penetration through all the sheets.

Key

- 1 weld
- b_1 edge to weld centreline distance of upper sheet, as specified in the pWPS
- b_2 edge to weld centreline distance of lower sheet, as specified in the pWPS
- b_3 distance between weld centre and edge of test piece
- l length of components
- t_1 parent material thickness of upper sheet
- t_2 parent material thickness of lower sheet

Figure 3 — Test piece for a lap joint**5.2.2 Welding of test pieces**

The test pieces shall be welded in accordance with the pWPS. If tack welds are to be consumed during friction stir welding of the production joint, then they shall be included in the test specimens. The location of tack welds shall be clearly marked on the test piece. Samples should be assessed from both tacked and un-tacked weld areas.

Welding of the test pieces shall be witnessed by an examiner.

5.3 Examination and testing of test pieces**5.3.1 Extent of testing**

Testing includes both non-destructive testing (NDT) and destructive testing. Testing shall be performed in accordance with the requirements of [Table 1](#) or [Table 2](#). [Annex B](#) provides additional information on NDT.

Examination of the test results shall be verified by an examiner.

Table 1 — Examination and testing of the test pieces for butt joints (Figure 1, Figure 2)

Type of examination and testing	Extent of examination and testing
Visual testing ^a	100 %
Transverse tensile test ^b	Two test specimens
Transverse bend test for wrought materials (in accordance with 5.3.3.4)	Two root test specimens
Fracture test for cast materials or wrought/cast combinations (in accordance with ISO 9017)	Two face test specimens
Macroscopic examination	One test specimen
Additional tests (e.g. non-destructive) ^d	If required

^a Discarded areas shall not be considered during testing, as shown in Figure 4.
^b For a butt joint in tube, at least one transverse tensile test specimen should be taken from the WOA, if possible.
^c For material over 12 mm in thickness, four transverse side-bend test specimens can be substituted for the two root and two face-bend test specimens. One longitudinal face-bend test specimen and one longitudinal root-bend test specimen can be substituted for the four transverse-bend test specimens.
^d Additional tests shall be carried out in accordance with the relevant requirements of the design specification.

Table 2 — Examination and testing of the test pieces for lap joints (Figure 3)

Type of examination and testing	Extent of examination and testing
Visual testing ^a	100 %
Macroscopic examination	Two test specimens
Additional tests (e.g. peel test, shear test, hammer S-bend test, non-destructive test) ^b	If required

^a Discarded areas shall not be considered during testing, as shown in Figure 6.
^b Additional tests shall be carried out in accordance with the relevant requirements of the design specification. Information on the hammer S-bend test is given in Annex C.

Examination and testing of test pieces including tack welds or start/end areas of a butt joint in tube shall be in accordance with the design specification.

Specific service, material or manufacturing conditions can require more comprehensive testing in order to obtain additional test data.

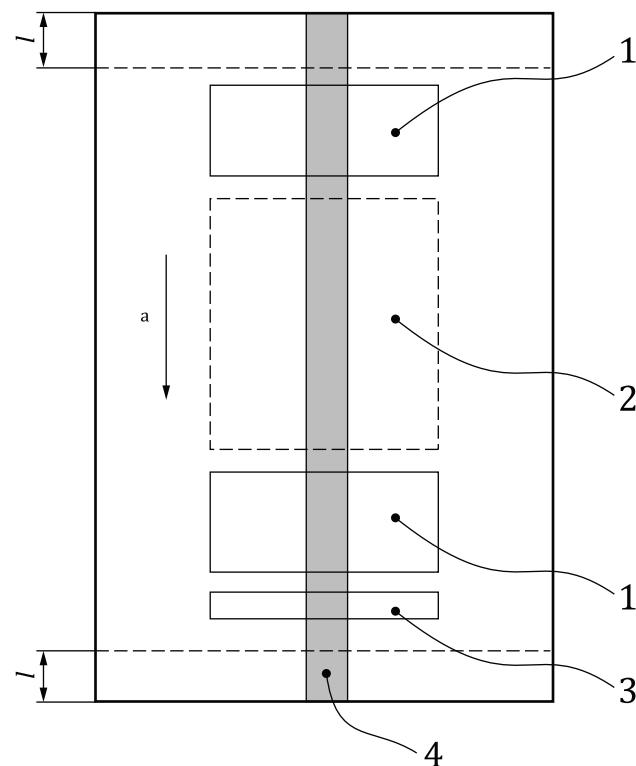
5.3.2 Visual testing and acceptance levels

The test pieces shall be visually tested in accordance with ISO 17637 prior to extracting the test specimens. The extent of testing shall be as specified in Table 1 or Table 2.

The acceptance levels of ISO 25239-5:2020, Annex A, shall apply.

5.3.3 Destructive tests

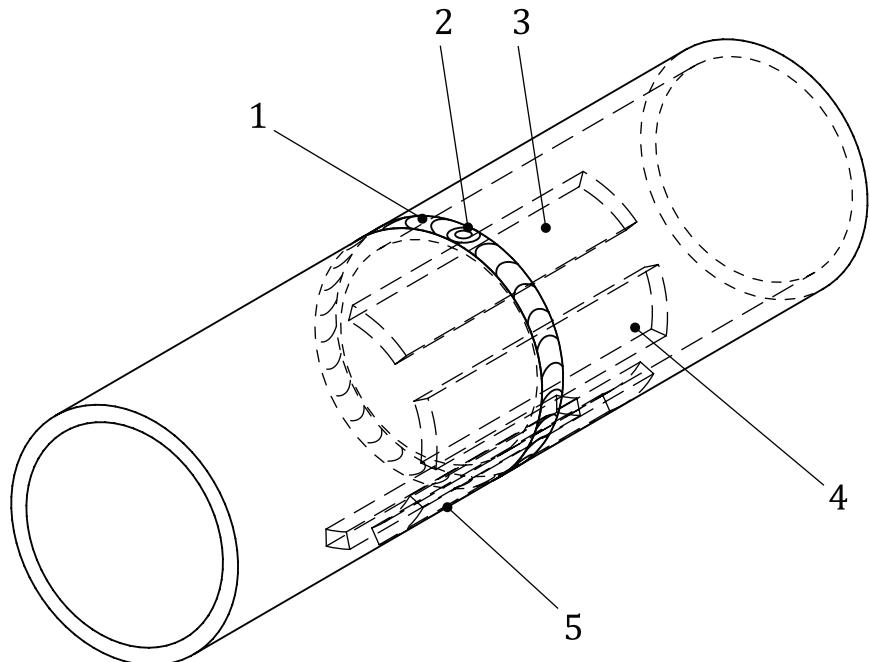
5.3.3.1 General


The extent of testing shall be as required in Table 1 and Table 2.

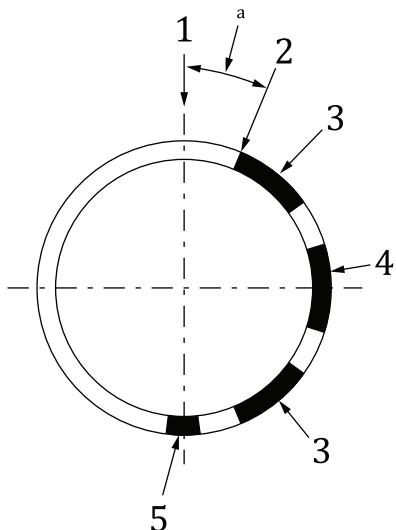
5.3.3.2 Location and extraction of test specimens

After the test piece has passed visual testing, test specimens shall be extracted.

The test specimens shall be located in accordance with Figure 4, Figure 5 or Figure 6.


The length discarded from each end of the test weld should be 50 mm or three times the weld penetration whichever is greater.

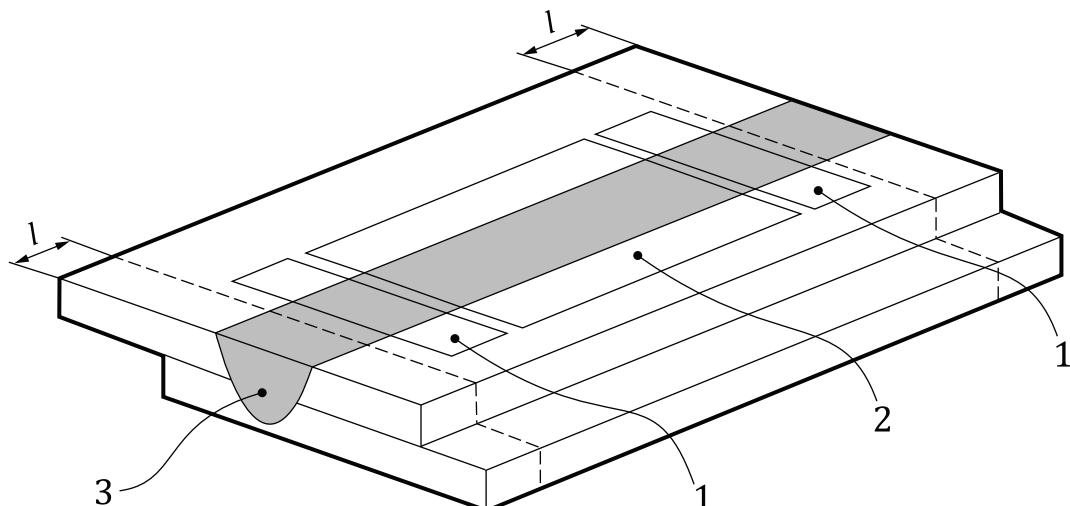
Key


- 1 area for: one tensile test specimen; bend test specimens or fracture test specimens
- 2 area for additional test specimens, if required
- 3 area for one test specimen for macroscopic examination
- 4 weld
- l length discarded from each end of the weld
- a Direction of welding.

NOTE Not to scale. Start and stop of the weld are not shown in this figure.

Figure 4 — Location of test specimens for a butt joint in flat material

a) 3D-view


b) End view

Key

- 1 start of weld
- 2 end of weld
- 3 area for: one tensile test specimen; bend test specimens or fracture test specimens
- 4 area for additional test specimens, if required
- 5 area for one test specimen for macroscopic examination
- a WOA yielding one tensile test specimen, if possible.

NOTE Not to scale. Welding direction is clockwise.

Figure 5 — Location of test specimens for a butt joint in tube

Key

- 1 area for one test specimen for macroscopic examination
- 2 area for peel test, shear test, hammer S-bend test specimens (see [Annex C](#)), if required
- 3 weld
- l* length discarded from each end of the weld

NOTE Not to scale. Start and stop of the weld are not shown in this figure.

Figure 6 — Location of test specimens in a lap joint

5.3.3.3 Transverse tensile test and acceptance levels

For butt joints, transverse tensile testing of test specimens shall be performed in accordance with ISO 4136.

For non-heat-treatable alloys and pure aluminium, the ultimate tensile strength of the test specimen shall not be less than the corresponding specified minimum value of the parent material in the "O" condition required in the relevant International Standard (see [Table 3](#)).

For heat-treatable alloys, the specified tensile strength, $\sigma_{\min,w}$, of the welded test specimen in the postweld condition shall satisfy the minimum requirement:

$$\sigma_{\min,w} = \sigma_{\min,pm} \times f_e \quad (1)$$

where

$\sigma_{\min,pm}$ is the specified minimum tensile strength of the parent material required in the relevant International Standard;

f_e is the joint efficiency factor (see [Table 3](#)).

For combinations of different aluminium alloys, the lower $\sigma_{\min,w}$ value of the two alloys shall be required.

In order to determine conformity to the f_e values in [Table 3](#), f_e values calculated from [Formula \(1\)](#) shall be rounded in accordance with the rules specified in ISO 80000-1:2009, Annex B.

Table 3 — Minimum efficiency for tensile strength of butt joints

Material type	Temper condition of parent material before welding ^{a,b}	Postweld condition	Joint efficiency factor f_e
Pure aluminium	All temper conditions	As welded	1,0 ^d
Non-heat-treatable alloys	All temper conditions	As welded	1,0 ^d
Heat-treatable alloys (equal and below 5 mm weld penetration)	T4	Natural ageing ^c	0,8
	T4	Artificial ageing ^c	0,8 ^e
	T5 and T6	Natural ageing ^c	0,7
	T5 and T6	Artificial ageing ^c	0,8 ^e
Heat-treatable alloys (above 5 mm weld penetration)	T4	Natural ageing ^c	0,7
	T4	Artificial ageing ^c	0,7 ^e
	T5 and T6	Natural ageing ^c	0,6
	T5 and T6	Artificial ageing ^c	0,7 ^e

^a Refer to ISO 2107.
^b For parent material in tempers not shown, $\sigma_{min,w}$ shall be in accordance with the design specification.
^c Ageing conditions shall be in accordance with the design specification.
^d Irrespective of the actual parent material temper used for the test, $\sigma_{min,pm}$ is based on the specified minimum tensile strength of the "O" condition.
^e Higher properties can be achieved if a full postweld heat treatment is applied; $\sigma_{min,w}$ shall be in accordance with the design specification.

5.3.3.4 Bend test and acceptance levels

Bend test should be performed in accordance with the design specification.

Otherwise for butt joints, the test specimens and bend testing shall be in accordance with ISO 5173. The advancing and retreating sides of the test specimens should be marked prior to testing. For all parent materials, the minimum bend angle shall be 180°, using the calculated former diameter based on the parent material elongation as per [Formula \(2\)](#):

For elongation >5 %:

$$d = \frac{100 \times t_s}{\Delta l} - t_s \quad (2)$$

where

- d is the maximum former diameter, in millimetres;
- t_s is the thickness of the bend test specimen (includes transverse side bends), in millimetres;
- Δl is the minimum tensile elongation, expressed as a percentage, required by the material specification (for combinations of different alloys, the lowest individual value shall be used).

For an elongation ≤5 %, annealing shall be carried out before testing. The former diameter shall be calculated with the elongation given by the specified "O" temper conditions.

If the bend tests fail due to grain growth that occurred during the annealing process, additional bend tests shall be performed in accordance with [Table 1](#), except that new test parameters shall be in accordance with the design specification.

Values of d shall be rounded down to the nearest whole number.

A smaller former diameter can be used.

During testing, the test specimens shall not reveal any single crack >3 mm in any direction as assessed by the unaided eye. Cracking appearing at any edge of a test specimen during testing shall be ignored in the evaluation unless there is evidence that it is due to incomplete penetration or a cavity.

5.3.3.5 Macroscopic examination and acceptance levels

The test specimen shall be prepared and examined in accordance with ISO 17639 on one side to clearly reveal the weld region.

The macroscopic examination shall include unaffected parent material. Macroscopic examination before etching shall reveal no defects.

Care should be taken when etching certain alloys to avoid producing false indications.

The acceptance levels of ISO 25239-5:2020, Annex A, shall apply. Other imperfections shall be within the specified limits of the relevant requirements or the design specification.

5.3.4 Re-testing

If the test piece fails to comply with any of the requirements for visual testing specified in [5.3.2](#), an additional test piece shall be welded and subjected to the same examination. If this additional test piece does not comply with the requirements, the welding procedure test has failed.

If any test specimen fails to comply with the requirements for destructive tests performed in accordance with [5.3.3](#), but only due to weld imperfections, then two further test specimens shall be tested for each one that failed. The additional test specimens shall be taken from the same test piece if there is sufficient material or from a new test piece. Each additional test specimen shall be subjected to the same tests as the initial test specimen that failed. If either of the additional test specimens fails to comply with the requirements, then the welding procedure test has failed.

5.4 Range of qualification

5.4.1 General

Each of the conditions given in [5.4.2](#) to [5.4.3](#) shall be met.

Additions, deletions or changes outside the ranges specified shall require a new welding procedure test to be performed.

5.4.2 Related to the fabricator

A qualification test carried out by a fabricator is valid for welding on the same type of welding machine installed in workshops or sites under that fabricator's technical and quality control.

Welding is considered to be carried out under the same technical and quality control conditions as long as the fabricator who performed the welding procedure test retains complete responsibility for all corresponding welding.

5.4.3 Other variables

The range of qualification for other variables shall be specified in the WPS.

5.5 Welding procedure qualification record

The WPQR is a statement of the results of assessing each test piece, including re-tests. The relevant items listed in the WPS shall be included, together with details of any features that would be rejectable, in accordance with the requirements of [5.3](#). If the test results are acceptable, then the WPQR is qualified and shall be signed and dated by the examiner or representative of the examining body. In addition, the pWPS is also qualified. A WPS shall be issued.

If the tests results also meet the criteria of any other acceptance levels, the pWPS is also qualified for those acceptance levels.

A standard format for the WPQR shall be used. An example of a WPQR form is shown in [Annex D](#).

6 Qualification based on pre-production welding test

6.1 General

The pre-production welding test shall be carried out in accordance with the relevant subclauses of [Clause 6](#), unless modified by [6.2](#) to [6.5](#).

Fulfilling the requirements of this document can also serve to qualify the welding operator (see ISO 25239-3).

6.2 Test pieces

Preparation and welding of test pieces shall be performed under the general conditions of production welding. The test pieces shall be designed so that their shapes and dimensions simulate the actual welding conditions of the structure. This should include essential items (e.g. stress conditions, heating effects, limited access and edge condition).

When actual components are used, jigs and fixtures shall be those that are used in production.

6.3 Examination and testing of test pieces

The test pieces shall be tested in accordance with [5.2](#) to [5.5](#), as relevant.

The following tests, as a minimum, shall be performed:

- visual testing (100 %);
- macroscopic examination (one or more macros shall be performed depending on the geometry of the structure).

6.4 Range of qualification

Any WPS issued in accordance with this document is limited to the type of joint used in the pre-production welding test.

The range of qualification is generally in accordance with [5.4.2](#) or [5.4.3](#) for welding.

6.5 Welding procedure qualification record

The WPQR is a statement of the results of assessing each test piece, including re-tests. The relevant items listed in the WPS shall be included, together with details of any features that would be rejectable, in accordance with the requirements of [6.3](#). If the test results are acceptable, then the WPQR is qualified and shall be signed and dated by the examiner or representative of the examining body. In addition, the pWPS is also qualified. A WPS shall be issued.

If the tests results also meet the criteria of any other acceptance levels, the pWPS is also qualified for those acceptance levels.

A standard format for the WPQR shall be used. An example of a WPQR form is shown in [Annex D](#).

Annex A (informative)

Example of a form for preliminary welding procedure specification (pWPS) and welding procedure specification (WPS)

Fabricator's pWPS No.:

Fabricator's WPQR No.:

Friction stir welding operator's name:

Parent material type, temper
and reference standard(s):

Parent material thickness (mm):

Outside diameter of tube (mm):

Equipment identification (model, serial number, and fabricator):

Tool identification (sketch)¹⁾:

Clamping arrangement (sketch)¹⁾:

Tack welding:

Joint preparation and cleaning methods:

Joint design

Joint design and joint configuration	Welding sequences
(Sketch) ¹⁾	

Welding details

Welding position:

Postweld processing:

Other information¹⁾:

Fabricator:

Name, date and signature:

1) If required.

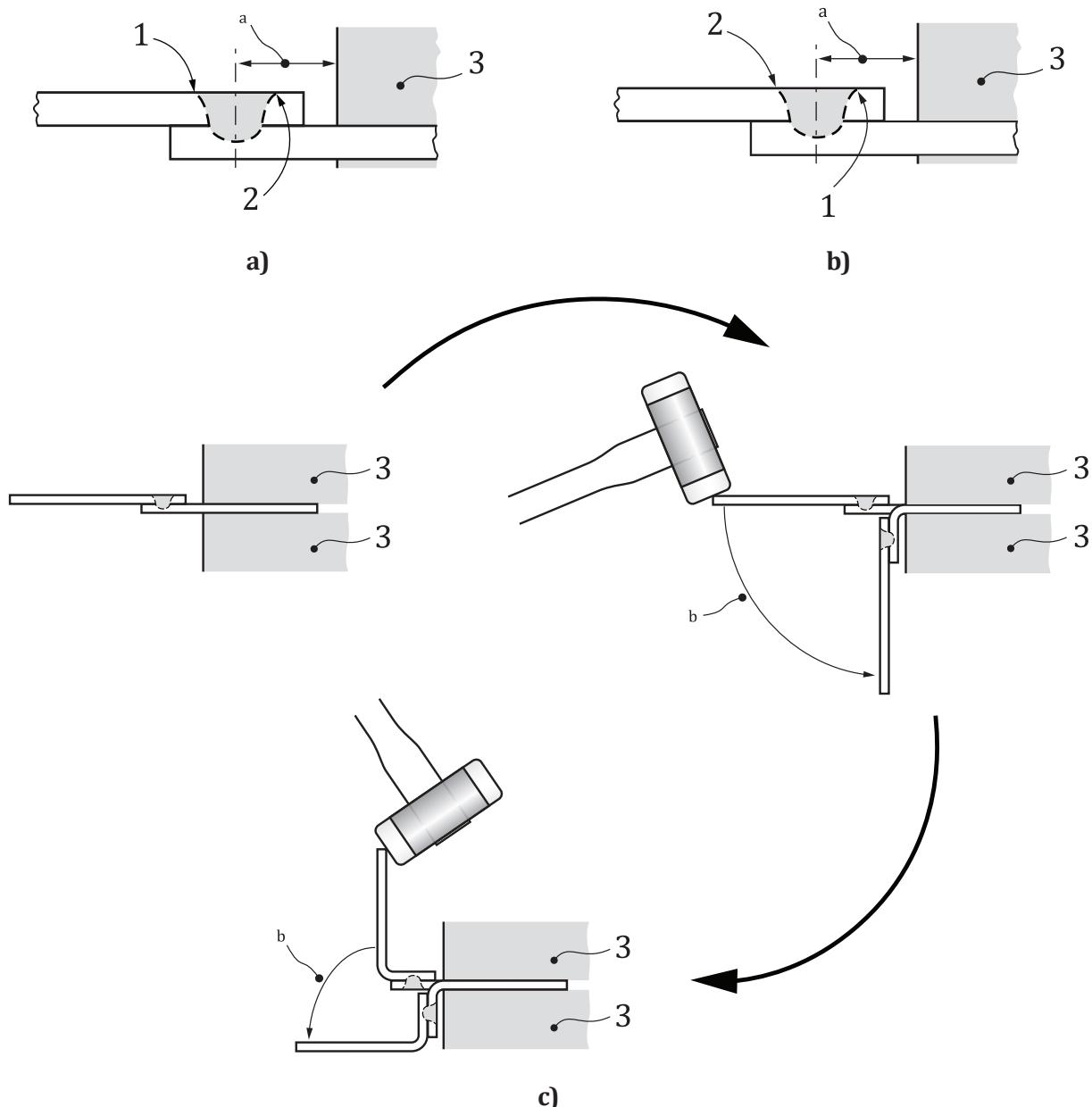
Annex B (informative)

Non-destructive testing

When non-destructive testing (NDT) is required, it should be performed on the test pieces before the test specimens are cut from them.

Depending on the joint geometry, parent materials, and work requirements, NDT, if required, should be performed in accordance with ISO 3452 (penetrant inspection), ISO 17636 (radiographic testing), and ISO 17640 (ultrasonic examination). If there are stringent requirements for weld integrity, it can be necessary to develop specific methods (e.g. phased-array ultrasonic testing or eddy-current testing).

Annex C (informative)


Hammer S-bend test of lap welds

The hammer S-bend test of lap welds has proven to be a sensitive method for qualitatively determining whether a weld contains imperfections, e.g. sheet thinning or hooks. Since this is a qualitative test, the appropriate distance from the centre of the weld to the vice (or holding clamp) should be adjusted to compensate for the ductility or lack of ductility and the thickness of the material being tested. For more ductile materials, the distance from the weld centre to the vice should be less than the distance for less ductile materials.

It is recommended that the hammer S-bend test be performed on two test specimens. The first test specimen should have the advancing side of the weld nearer to the hammer [[Figure C.1 a\)](#)]. The second test specimen should have the retreating side nearer to the hammer [[Figure C.1 b\)](#)].

This test does not replace other quantitative tests.

16

Key

- 1 advancing side of weld
- 2 retreating side of weld
- 3 vice
- a Clamp edge to weld centreline distance.
- b Direction of swinging hammer.

NOTE The large arrows indicate the sequence of testing.

Figure C.1 — Unrestrained hammer S-bend test method

Annex D

(informative)

Example welding procedure qualification record form (WPQR)

Fabricator's WPQR No.:

Welding procedure qualification — Test certificate

Fabricator:

Address:

Fabricator's pWPS No.:

Examiner or examining body:

Reference No.:

Code/testing standard:

Date of welding:

Friction stir welding operator's name:

Parent material type and reference standard(s):

Parent material thickness (mm):

Outside diameter of tube (mm):

Joint design (sketch):

Postweld heat treatment:

Other information:

The signature below certifies that the test welds were prepared, welded and tested satisfactorily in accordance with the requirements of the code/testing standard indicated above.

Location

Date of issue

Examiner or examining body
Name, date and signature

Record of weld test

Fabricator:

Fabricator's pWPS No.:

Fabricator's WPQR No.:

Examiner or examining body:

Friction stir welding operator's name:

Parent material type, temper and reference standard(s):

Parent material thickness (mm):

Outside diameter of tube (mm):

Tool identification (sketch)²⁾:Clamping arrangement (sketch)²⁾:

Equipment identification:

Tack welding:

Joint preparation and cleaning methods:

Joint design

Joint design and joint configuration		Welding sequences					
(Sketch) ²⁾							

Welding details

Run	Tool motion, rotation speed r/min	Axial force or Heel plunge depth kN or mm	Depth of probe penetration in lower sheet ²⁾ mm	Tilt angle °	Side tilt angle °	Dwell time s	Welding speed mm/min	Others

2) If required.

ISO 25239-4:2020(E)

Pre-weld heat treatment:

Preheating temperature (°C): _____

Preheat maintenance temperature (°C): _____

Interpass temperature (°C): _____

Shielding gas: _____ Designation: _____ Gas flow rate (l/min): _____

Post-weld processing:

Post-weld heat treatment
(time, temperature, method,
heating and cooling rates): _____Other information³⁾:**Test results**

Fabricator:

Address:

Fabricator's pWPS No.:

Fabricator's WPQR No.:

Test laboratory's reference No.:

Examiner or examining body:

Reference No.:

Visual testing

Designation of imperfection in accordance with ISO 25239-5:2020, Annex A	Acceptance level in accordance with ISO 25239-5:2020, Annex A	Acceptable	Unacceptable	Report No.

Macroscopic examination

Designation of imperfection in accordance with ISO 25239-5:2020, Annex A	Acceptance level in accordance with ISO 25239-5:2020, Annex A	Acceptable	Unacceptable	Report No.

3) If required.

Destructive tests

Tensile tests required: Yes/No

Type/No.	$\sigma_{\min,w}$ N/mm ²	$\sigma_{\min,pm}$ N/mm ²	f_e $\sigma_{\min,w}/\sigma_{\min,pm}$	Fracture location	Remarks
Requirement					
1		—			
2		—			

 $\sigma_{\min,w}$: Tensile strength of test specimen $\sigma_{\min,pm}$: Tensile strength of parent material

Bend tests required: Yes/No

Type/No.	Bend side	Former diameter d mm	Result

Other tests⁴⁾:

Remarks: _____

Tests carried out in accordance with
the requirements of: _____

Laboratory report reference No.: _____

Test results were acceptable/not acceptable (delete as appropriate)

Test carried out in the presence of: _____

4) If required.

Bibliography

- [1] ISO 2107, *Aluminium and aluminium alloys — Wrought products — Temper designations*
- [2] ISO 3452 (all parts), *Non-destructive testing — Penetrant inspection*
- [3] ISO 13916, *Welding — Measurement of preheating temperature, interpass temperature and preheat maintenance temperature*
- [4] ISO 17636 (all parts), *Non-destructive testing of welds — Radiographic testing*
- [5] ISO 17640, *Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and assessment*
- [6] ISO 18785 (all parts), *Friction stir spot welding — Aluminium*
- [7] ISO 25239-2, *Friction stir welding — Aluminium — Part 2: Design of weld joints*
- [8] ISO 25239-3, *Friction stir welding — Aluminium — Part 3: Qualification of welding operators*

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards-based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than one device provided that it is accessible by the sole named user only and that only one copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced – in any format – to create an additional copy. This includes scanning of the document.

If you need more than one copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright and Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email cservices@bsigroup.com.

Rewards

Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001
Email: cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

